
WiPhone Programming Manual

Revision history 2

Prerequisites 2

Installing Arduino Desktop IDE 2

Installing Arduino-ESP32 3

Choosing a board type 3

Installing Arduino plugin for uploading files 4

Obtaining a copy of firmware 4

Compiling and uploading firmware 4

Uploading data files 5

What is what in the project directory 6

Developing custom “apps” 7

WiPhone Programming Manual 1

Revision history
Ver. Date Author Comment

0.6 10 Jun 2019 Andriy Makukha Instructions for early evaluators

0.7.1 7 Oct 2019 Andrii Makukha Step-by-step guide for developing custom apps

Prerequisites

Hardware

For compiling and editing WiPhone firmware, you will need a computer capable of

running Arduino Desktop IDE (with either Linux, MacOS or Windows operating

systems) and a microUSB cabel.

Software

The following software packages are required to compile WiPhone firmware:

1. Arduino Desktop IDE

https://www.arduino.cc

2. Arduino core for ESP32 (Arduino-ESP32)

https://github.com/espressif/arduino-esp32

3. Arduino plugin for uploading files to ESP32 file system

https://github.com/me-no-dev/arduino-esp32fs-plugin

If you want to contribute to the firmware, you should also have the Git source-control

management tool: https://git-scm.com/

Installing Arduino Desktop IDE
Download an installer for your platform from the official Arduino website:

https://www.arduino.cc

Download page: https://www.arduino.cc/en/Main/Software

Follow the installation procedure for each operating system:

• For Linux, download the archive, extract it, run file “install.sh”.

See official instructions for more details: https://www.arduino.cc/en/Guide/Linux

WiPhone Programming Manual 2

https://www.arduino.cc/en/Guide/Linux
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/
https://git-scm.com/
https://github.com/me-no-dev/arduino-esp32fs-plugin
https://github.com/espressif/arduino-esp32
https://www.arduino.cc/

• For MacOS, copy the file from downloaded archive into the Applications folder.

See official instructions for more details:

https://www.arduino.cc/en/Guide/MacOSX

• For Windows, download and run the installer.

See official instructions for more details:

https://www.arduino.cc/en/Guide/Windows

Installing Arduino-ESP32
Follow the official installation instructions: https://github.com/espressif/arduino-

esp32#installation-instructions

If your Arduino IDE is recent enough (ver. 1.8+), you can install Arduino-ESP32 with

Arduino IDE’s Boards Manager:

1. Start Arduino Desktop IDE.

2. Open Preferences window.

3. Enter “https://dl.espressif.com/dl/package_esp32_index.json” URL (without

quotes) into the Additional Board Manager URLs field.

4. Open the Boards Manager… window by navigating to Tools > Board: “…” >

Boards Manager…

5. Search for “esp32” and install esp32 package by Espressif Systems.

Choosing a board type
After installing Arduino-ESP32 (or, equivalently, esp32 package in the Boards

Manager), select a WiPhone-compatible board with 16 MB flash by navigating to Tools

> Board: “…” menu. Choosing “M5Stack-FIRE” is currently recommended!

NOTE: Choosing your board will also afftect the partitionning of the internal flash (this

setting can be changed or viewed by Tools > Partition scheme).

WARNING: Changing partition scheme might overwrite the internal flash file system

(SPIFFS) causing irreversible data loss of WiPhone data files (like phonebook and SIP

accounts). Stick to a single board type / partition scheme early in the development to

avoid data loss.

WiPhone Programming Manual 3

https://dl.espressif.com/dl/package_esp32_index.json
https://github.com/espressif/arduino-esp32#installation-instructions
https://github.com/espressif/arduino-esp32#installation-instructions
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/MacOSX

ADVANCED USER NOTE: Avaliable ESP32 boards and partition schemes are specified

here: https://github.com/espressif/arduino-esp32/blob/master/boards.txt

Installing Arduino plugin for uploading files
This plugin is required to upload data files to WiPhone’s internal flash (SPIFFS). It is

needed, for example, to load the ringtone file and configuration. It also formats the

SPIFFS partition of ESP32 to allow storing WiPhone data (like phonebook and SIP

accounts) into the internal flash.

WARNING: Loading files with this plugin into WiPhone will overwrite any existing files in

the SPIFFS partition, causing irreversible data loss. Use this only if you know what you

are doing!

Installation procedure:

1. Download the plugin archive: https://github.com/me-no-dev/arduino-esp32fs-

plugin/releases/download/1.0/ESP32FS-1.0.zip

2. Extract the archive and copy the extracted directory ESP32FS into the tools

subdirectory of Arduino sketchbook directory:

• On Linux, create directory ~/Arduino/tools/ (you can run “mkdir -p

~/Arduino/tools/” in terminal) and copy the ESP32FS direcory into it.

• On MacOS, create directory ~/Documents/Arduino/tools/ (you can run “mkdir

-p ~/Documents/Arduino/tools/” in terminal) and copy the ESP32FS direcory

into it.

Consult the official installation instructions as well: https://github.com/me-no-

dev/arduino-esp32fs-plugin#Installation

Obtaining a copy of firmware
In the future we will publish the firmware on GitHub.

For now (before the rewards are delivered), we will send copies of the firmware to

crowdfunding backers who sign an NDA. If you want a copy, please send an email to

Ben (ben@wiphone.io).

WiPhone Programming Manual 4

https://github.com/me-no-dev/arduino-esp32fs-plugin#Installation
https://github.com/me-no-dev/arduino-esp32fs-plugin#Installation
https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/download/1.0/ESP32FS-1.0.zip
https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/download/1.0/ESP32FS-1.0.zip
https://github.com/espressif/arduino-esp32/blob/master/boards.txt

Compiling and uploading firmware
After obtaining firmware, make sure that all of the files and subdirectories are stored in

a directory called “WiPhone”. Then, to compile and upload the firmware to WiPhone:

1. Connect WiPhone to your computer with a microUSB cable (the cable should

have a microUSB plug on one end to connect to WiPhone, and any other

connector that is compatible with your comnputer’s sockets on another end, like

USB-A or USB-C plug).

2. Open the file WiPhone.ini from the project directory in Arduino IDE.

3. Press button “Upload” in the top left corner of the Arduino IDE window (the

button looks like a right arrow).

Uploading data files
WiPhone allows data files to be stored permanently in the internal Flash file system

(SPIFFS). Particularly, this partition is used to store the ringtone music file and

configuration data.

To upload data files from subdirectory “data“ to SPIFFS, do the following:

1. Make sure that the plugin for uploading files to ESP32 is installed (otherwise,

see the dedicated section above).

2. Navigate to “Tools” menu in Arduino IDE and press “ESP32 Sketch Data Upload”.

WiPhone Programming Manual 5

What is what in the project directory
Here are some files and subdirectories from the source directory:

• WiPhone.ino

◦ Arduino project file: a C++ file with the main loop and the main phone logic

• GUI.h

• GUI.cpp

◦ main GUI logic files (widgets and apps are defined here)

• tinySIP.h

• tinySIP.cpp

◦ our implementation of the SIP protocol

• src/

◦ directory for code that is not in active development (these files are crucial

for WiPhone’s operation, but will not be opened by Arduino IDE by default,

unlike files in the main directory)

◦ src/TFT_eSPI/

▪ a library for ESP32 to drive the screen at fast speed; includes sprites and

font rendering capabilities

◦ src/VoIP/

▪ audio codecs and other definitions for Voice-over-IP

◦ src/assets/

▪ static data components (such as fonts, icons, background image, etc.)

◦ src/drivers

▪ code that operates different integrated circuits (ICs) of the WiPhone

• data/

◦ files to be loaded into WiPhone’s internal flash file system (SPIFFS)

• tools/

◦ custom Python scripts to generate “assets”, namely 3-bit antialiased fonts

and icons

• other WiPhone source files in the main directory

WiPhone Programming Manual 6

Developing custom “apps”
Developing custom apps in WiPhone’s Arduino firmware is fairly easy and

straightforward. Even a beginner programmer with knowledge of C++ should be able

to figure it out after learning how existing apps work. Having said that, there are some

non-transparent parts that will be covered and discussed in this chapter. As well as

some principal design disadvantages that will limit the way apps can be developed

(see the disclaimer below).

Disclaimer: single thread

As of September 2019 the WiPhone firmware uses cooperative multitasking. We are

not using FreeRTOS threads because we encountered instability with the network stack

in our early trials. Therefore any custom apps that are developed for WiPhone must

follow a cooperative multi-tasking approach: never lock or take more than 10-100 ms

of CPU time per call. Failing to do so will make the interface responsive. For example,

the entire phone will appear to be frozen if a non-asynchronous network connection is

attempted but cannot be established rapidly or at all. This area is open for

improvement later, but for now we are concentrating on bringing the overall phone

functionality up to the feature level we feel is minimally acceptable before coming

back to add threads. If someone else wants to implement a patch please contact us so

we can discuss feasibility.

Steps for adding a custom app

 1. Declare a unique ID for the new app. For this purpose, add a new element to

the ActionID enumeration:

Find “typedef enum ActionID” in file “GUI.h”. Add a unique name below the line

“GUI_BASE_APP = 0x4000”. For example, “GUI_APP_NEW_CUSTOM”.

 2. Declare the app class. The easiest way to do this is to find an existing app

similar to the one you want to build, copy its code, change class name and then

change that code to do the things you want.

The app class declaration goes into “GUI.h” file, definitions of its methods go

into “GUI.cpp”.

The app class must derive from “WiPhoneApp” or of its derivatives (like

“WindowedApp” or “FocusableApp”, or both).

Make sure the method “getId” returns the ID that you created in the first step.

 3. Define the app methods. Steps 2 and 3 are the actual app implementation. This

is usually the biggest and longest step.

WiPhone Programming Manual 7

This is done in file “GUI.cpp”.

Each app defines two main methods: “processEvent()” and “redrawScreen()”.

“processEvent(EventType event)” is the method that is called by GUI to allow your

app process events and update its internal state accordingly. The events are, for

example, button presses, timers (as requested by your app) or scheduled

events (as scheduled by your app).

“redrawScreen(bool redrawAll)” is the method that is called by GUI to allow your

app to redraw the screen partially and/or telling your app that it should redraw

the screen entirely (like after the screen was redrawn by some other app, like a

call or a screen lock).

 4. Add your app ID into the main menu.

For that purpose, find “GUIMenuItem menu” in file “GUI.h”.

Increase size of the array by 1.

Add a line of the form “{ XX, YY, “My custom app", "", "", GUI_APP_NEW_CUSTOM },“

into the definition of the array “menu”; XX – should be a unique ID of the menu

item (for simplicity, it should be the current size of the array), YY – is parent ID,

or ID of the submenu, in which you want your app to appear.

 5. Instantiate your app. This is, basically, just letting the GUI know how to call your

app’s constructor.

Find definition of method “GUI::enterApp()” in file “GUI.cpp” and add code to

create a new object out of your app class. (Do it similarly to other apps.)

WiPhone Programming Manual 8

	WiPhone Programming Manual
	Revision history
	Prerequisites
	Hardware
	Software
	Installing Arduino Desktop IDE
	Installing Arduino-ESP32
	Choosing a board type
	Installing Arduino plugin for uploading files
	Obtaining a copy of firmware
	Compiling and uploading firmware
	Uploading data files
	What is what in the project directory
	Developing custom “apps”
	Disclaimer: single thread
	Steps for adding a custom app

